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Physics of photonic semiconductor devices

Light-emitting diodes 
- Blue and green LEDs: limiting factors for the IQE

Laser diodes
- Generalities
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High efficiency white LEDs

• Commercial white LEDs now available with an efficiency 
> 175 lm/W (A class efficiency)

• Projected lifetime of 50’000 hours (vs 15’000 hours for 
conventional white LEDs (E or F class efficiency, ~75 
lm/W))
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High efficiency white LEDs

Factors limiting the internal quantum 
efficiency (IQE) of white LEDs
1. Material quality: the lack of affordable GaN substrate
2. Internal electric field: the green gap
3. Efficiency droop: an intrinsic effect?
4. Efficiency at low injection: the role of the InGaN underlayer



 growth on sapphire, silicon carbide, silicon, …
Trade-off between yield (efficiency + fabrication cost) and marketing price (US$18 klm–1, 
compared with <US$1 klm–1 for incandescent light bulbs in 2011, close to US$1 klm-1 in 2014, < US$1 
klm-1 since 2017)

Very large lattice mismatch

Al2O3 (0001):        +16%

6H-SiC (0001):     -3.5%  

Si (111):               -17%

High density of dislocations

TEM 250 nmSapphire

AFM

108-1010 cm-2
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Material quality: the lack of affordable GaN substrate



High efficiency despite high dislocation density
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Device efficiency and dislocation density
After Nobel Lecture by S. Nakamura, “Background story of the invention of efficient blue InGaN LEDs”

Behavior specific to 
InGaN



107 cm-2

1010 cm-2

Blue LEDs ( InGaN QW active 
region) are not sensitive to 
dislocations (i.e.,  from 
nonradiative centers)

Mukai et al., JJAP (1998)

1010 cm-2

107 cm-2 Why?
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Device efficiency and dislocation density

Nichia Inc.



TEM image of  InGaN/GaN
QWs grown by MOCVD

Quantum dots (In-rich clusters), acting as efficient localization centers, have been proposed to explain
the high-efficiency of nitride-based light emitters1 (but disproved by later TEM studies2)

The current dominating picture relies on indium atom assemblies naturally present in the random
InGaN alloy (size << clusters, S. F. Chichibu et al., Nat. Mater. 5, 810 (2006)), whose density exceeds the
threading dislocation density, where carriers remain trapped/localized (M. Filoche et al., PRB 95, 144204
(2017)) but the true role of in-plane carrier localization has been recently challenged (A. David, Phys. Rev.
Applied 15, 054015 (2021) & T. F. K. Weatherley et al., Nano Lett. 15, 5217 (2021))
1Narukawa et al., APL 70, 981 (1997)

Free carriers (QW)

dislocation

Localized carriers (“QD”)

dislocation

1990: C. Weisbuch and J. Nagle (patent)

1995: J.-M. Gérard et al., InAs QDs on 
silicon substrate Appl. Phys. Lett. 68, 3123 (1996)
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Carrier localization in InGaN quantum wells

2Smeeton et al., APL 83, 5419 (2003)
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InGaN/GaN LED efficiency: the green gap



370 - 450 nm: indium content 
 efficiency 

BUT: maximum indium content for high 
quality material ~25%

450 - 600 nm:  well thickness 
 efficiency 

Nakamura et al, SST (1999)Nakamura et al, SST (1999)

[In] Lw

Nichia Inc.
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InGaN/GaN LED efficiency: the green gap

Motivation for the use of blue LEDs emitting @ 450 
nm for the realization of high-brightness white LEDs 
(automotive industry, solid-state lighting, etc.)

-eLF term to 
reach longer 
 values
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Strong decrease in the oscillator 
strength with increasing well width

 r 

IQE (i) dramatically decreases with increasing 
well width unless appropriate measures are taken 
( role of underlayer (slides 14-17) + A. David et 
al., Phys. Rev. Applied 11, 031001 (2019))
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QCSE and oscillator strength in quantum wells

2
totnr

i
nr r r nr

Bn
A Bn Cn


  

  
  

No built-in field

Oscillator strength

radiative term

SRH term Auger-Meitner term
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Efficiency droop: an intrinsic effect?

Appl. Phys. Lett. 106, 031101 (2015)

“Droop” region!

Soraa Inc.

Efficiency curve of high-brightness blue-violet LEDs



Auger-Meitner recombinations
Direct and indirect processes

Appl. Phys. Lett. 91, 141101 (2007)

n is the carrier density
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Efficiency droop: Auger-Meitner effect

2 3dn
An Bn Cn G

dt
    

Quasi-bulk active layers

Appl. Phys. Lett. 98, 161107 (2011)



Appl. Phys. Lett. 91, 243506 (2007)

Improved LED efficiency at high current by reducing 
the carrier density

 Use of large quantum wells or double 
heterostructures (DH)
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Peak of EQE (IQE) at J  1-10 A/cm2 in state of the art LED devices relying on thin QWs 
(see also slide 11)

Move toward larger manufacturing chip size (350 ×
350 m2  1 × 1 mm2 or more) to reach a high 
luminous efficiency at a lower driving current density 
( drive LEDs at J values where the weight of the B
term is still significant over the C one)

Made possible thanks to an improved layer uniformity
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Efficiency droop: Auger-Meitner effect
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LED efficiency: role of the underlayer
State of the art high-brightness blue LEDs always possess an indium-containing (InGaN
or InAlN) underlayer (UL) prior to the QW active region

Increase in the effective carrier lifetime (tot) of the QW 
emission with increasing UL thickness for a given indium 
content or with increasing indium content for a given UL 
thickness
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Appl. Phys. Lett. 113, 111106 (2018)

 Drastic effect (> 2 orders of magnitude) due to the capture 
of nonradiative centers (SRH term) by the UL prior to the 
growth of the active region (QWs)



• Increase in the carrier lifetime (tot) due to a decrease in 
Anr  strong increase in the IQE

• Peak of the IQE at lower current density (and hence lower 
carrier density, J(n))

• Effect not related to dislocations, strain, or built-in field but 
due to the reaction of In atoms with surface defects that 
create defects acting as deep traps in the InGaN QWs
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LED efficiency: role of the underlayer

15

2
totnr

i
nr r r nr

Bn
A Bn Cn


  

  
  

Appl. Phys. Lett. 111, 262101 (2017)

Appl. Phys. Express 12, 034002 (2019)

sapphire FS-GaN

AlInN lattice-
matched to GaN
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LED efficiency: beyond the ABC model
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2 3 2dn
An Bn Cn Dn G

dt
     

×

-
Defect-assisted Auger-Meitner term

2 2
DDn k An

No UL

10 nm UL

55 nm UL

Appl. Phys. Lett. 116, 222106 (2020)

 IQE

Decreasing A term

No UL

10 nm UL

55 nm UL

(extrinsic process)
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LED efficiency: latest picture
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Nonradiative channels under low injection:

• Threading dislocations (TDs)

• Point defects (PDs)

V-pits form around TD termination at the 
surface and create an energy barrier 
preventing carriers to reach the 
dislocations making them mostly inactive

Phys. Rev. Lett. 95, 127402 (2005)

In-containing UL

InGaN QW

Use of an indium-containing underlayer to mitigate the 
presence of PDs, i.e., decrease their density in the 
active region (InGaN QW). 

Pending question: in the absence of V-pits, what is the 
most impactful nonradiative center: TDs or PDs?
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Laser diodes: 
Generalities

Physics of photonic semiconductor devices



Laser: a clear threshold is observed in 
the L-I curve (+ far-field pattern)  Light amplification

Light Amplification by Stimulated Emission of Radiation
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Laser diodes

Physics of photonic semiconductor devices

Blue LD

Far-field pattern



1980’s
GaAs
based 
optoelectronics

BUT light emission limited to the Red and IR
CD, DVD, Telecom

1970
1st laser diode
 ~780 nm 

Jthr~ 4.3 kA/cm2

Ioffe, Russia

2000
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Semiconductors: a brief overview



1990’s
GaN
short-wavelength
optoelectronics

High density DVD, color displays

1993

UV, blue, and green LEDs

2003
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Semiconductors: a brief overview

Demonstration of reliable (i.e., long lifetime) green semiconductor laser diodes with a 
high production yield on the way (available from Nichia. Inc.)!




